Technical Reference

Tektronix

MTS400 Series
MPEG Test Systems
Specifications and Performance Verification
077-0207-00

This document applies to firmware version 1.7 and above.

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service.

www.tektronix.com

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Table of Contents

	General Safety Summary Service Safety Summary Preface	iii v vii
	Related Manuals	vii
Specifications		
	Electrical Specifications	1-2
	Mechanical Characteristics Environmental Characteristics	1-18 1-19
Performance Verif	ication	
	Preparation	2-1
	Verification Procedures	2-3

List of Figures

Figure 2–1: Cable connections on the MTS400 Series system	2-3
Figure 2–2: Clock settings dialog box	2-4
Figure 2–3: PCR Initial Value settings dialog box	2-5
Figure 2–4: Others settings dialog box and	
Select Update Item settings dialog box	2-6
Figure 2–5: Select ASI interface	2-7
Figure 2–6: ASI interface analysis results	2-8
Figure 2–7: Record Settings dialog box	2-9
Figure 2–8: Record Settings window with the recording function armed	2-10
Figure 2–9: MPEG Player playing a SMPTE310M transport stream	2-12
Figure 2–10: SMPTE310M interface analysis results	2-13
Figure 2–11: SPI interface analysis results	2-15
Figure 2–12: RF interface selection and settings	2-16

List of Tables

Table i: MTS400 Series product documentation	vii
Table 1–1: Platform characteristics	1-2
Table 1–2: A11 and A12 Main MPEG I/O card electrical characteristics	1-4
Table 1-3: A170 LVDS/ASI/SMPTE310M Interface card	
electrical characteristics	1-6
Table 1-4: QPSK/8PSK interface card	
electrical characteristics with a QPSK input	1-8
Table 1–5: QPSK/8PSK interface card	
electrical characteristics with an 8PSK input	1-8
Table 1–6: 8PSK and QPSK measurements	1-9
Table 1–7: COFDM interface card electrical characteristics	1-10
Table 1–8: COFDM measurements	1-11
Table 1–9: 8VSB board electrical characteristics	1-13
Table 1–10: 8VSB measurements	1-13
Table 1–11: QAM Annex B board characteristics	1-14
Table 1–12: QAM Annex B measurements	1-15
Table 1–13: Video Over IP board - Ethernet Electrical Port	1-16
Table 1–14: Video Over IP board - Ethernet Optical port	1-16
Table 1–15: AC power source electrical characteristics	1-17
Table 1–16: Mechanical characteristics	1-18
Table 1–17: Environmental characteristics	1-19

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.

To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of the system. Read the *General Safety Summary* in other system manuals for warnings and cautions related to operating the system.

To Avoid Fire or Personal Injury

Use Proper Power Cord. Use only the power cord specified for this product and certified for the country of use.

Connect and Disconnect Properly. Do not connect or disconnect probes or test leads while they are connected to a voltage source.

Ground the Product. This product is grounded through the grounding conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Powering Off. The power cord provides Mains disconnect.

Replace Batteries Properly. Replace batteries only with the proper type and rating specified.

Do Not Operate Without Covers. Do not operate this product with covers or panels removed.

Use Proper Fuse. Use only the fuse type and rating specified for this product.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Wear Eye Protection. Wear eye protection if exposure to high-intensity rays or laser radiation exists.

Do Not Operate With Suspected Failures. If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in an Explosive Atmosphere.

Keep Product Surfaces Clean and Dry.

Provide Proper Ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Symbols and Terms

Terms in this Manual. These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

Symbols on the Product. The following symbols may appear on the product:

High Voltage (Earth) Terminal

Service Safety Summary

Only qualified personnel should perform service procedures. Read this *Service Safety Summary* and the *General Safety Summary* before performing any service procedures.

Do Not Service Alone. Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

Disconnect Power. To avoid electric shock, switch off the instrument power, then disconnect the power cord from the mains power.

Use Care When Servicing With Power On. Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

To avoid electric shock, do not touch exposed connections.

Preface

This manual lists the electrical, mechanical, and environmental specifications, and the certification and compliance statements for the Tektronix MTS400 Series MPEG Test Systems instruments, covering both the MTS415 and MTS430 test systems. Also provided are procedures for verifying the performance of the test systems.

NOTE. Text in this manual about the MPEG Player refers to the MPEG player application installed in the MTS400 Series systems (MTS415 and MTS430).

Related Manuals

The following manuals are also available to use with the MTS400 Series MPEG Test Systems. These manuals are available on the MTS400 Series Product Documentation CD-ROM (Tektronix part number 063-4197-xx) that was supplied with the test system and from the Tektronix Web site.

Table i: MTS400 Series product documentation

Item (Tektronix part number)	Description
MTS400 Series Quick Start User Manual (071-2607-xx English, 071-2608-xx Japanese)	Provides installation and high-level operational overviews
MTS400 Series Analyzer Applications User Manual (077-2505-xx)	Provides in-depth operating information for the MTS400 analyzer applications
MTS400 Series Generator Applications User Manual (077-0204-xx)	Provides in-depth operating information for the MTS400 Series generator applications
MTS400 Series Carousel Applications User Manual (077-0203-xx)	Provides in-depth operating information for the MTS400 Series carousel applications
MTS400 Series Programmer Manual (077-0206-xx)	Describes the remote control commands available for the MPEG Player application
MTS400 Series Specifications and Performance Verification Technical Reference (077-0207-xx) (this manual)	Provides complete product specifications and a procedure for verifying the operation of the instrument
MTS400 Series Release Notes (077-0200-xx)	Provides information about software problems and behaviors

Specifications

This chapter contains specifications for the MTS400 Series MPEG Test Systems.

All specifications are guaranteed unless labeled "typical." Typical specifications are provided for your convenience but are not guaranteed.

Unless otherwise stated, all specifications apply to both the MTS415 and MTS430 MPEG Test Systems.

To meet specifications, the following conditions must be met:

- The system must have been calibrated/adjusted in an ambient temperature between 20 °C and 30 °C (68 °F and 86 °F).
- The system must be kept within the environmental limits specified in this document.
- The system must be powered from a source maintaining voltage and frequency within the limits described in this document.
- The system must have been operating continuously for at least 20 minutes within the specified operating temperature range.
- The instrument must have had its signal-path-compensation routine last executed after at least a 20 minute warm-up period at an ambient temperature within 5 °C of the current ambient temperature.

Any conditions that are unique to a particular characteristic are expressly stated as part of that characteristic.

NOTE. The product calibration classification for this system is List 2; no calibration data reports are available. However, all measurement equipment used to establish or verify conformance of the product with published specifications is traceable.

Electrical Specifications

The following tables list the published specifications for the MTS400 Series MPEG Test Systems.

Platform Characteristics

Table 1–1 lists the general characteristics of the MTS400 Series platform.

Table 1-1: Platform characteristics

Characteristic	Description
Operating system	Microsoft Windows XP Professional with Service Pack 2
Processor	P4, 2.8 GHz
Disk space	
Operating system and software applications	82 GB, Ultra ATA100 IDE hard drive
MPEG file storage	144 GB total (two, 72 GB SCSI hard drives, one for Playout and one for Record)
MPEG storage disk I/O port	SCSI-3 (Ultra 160), Micro D68 connector, 68 pin
RAM	1 GB (one SIM of DDRS memory)
CD-ROM drive	CD-R/W, DVD-R/RW, DVD+R/RW
Floppy disk drive	3.5 inch, 1.44 MB high density, double-sided (2HD)
Display	LCD, 1024 X 768, 10.4 inch
Ethernet	
10/100	One 10/100Base-T; RJ45 connector
	Supported protocol: Ethernet/IP/UDP/ MPEG-TS and VLAN
	When used in MPEG-TS protocol, the minimum and maximum link bit rates are 250 kbps and 100 Mbps respectively
	IP playout bit rate is typically up to 90 Mbps
10/100/1000 (GigE)	One 10/100/1000Base-T; RJ45 connector
	Supported protocol: Ethernet/IP/UDP/ MPEG-TS and VLAN
	When used in MPEG-TS analysis and record, the minimum and maximum link bit rates are typically 250 kbps and 100 Mbps respectively
	IP playout bit rate is typically up to 190 Mbps

Table 1-1: Platform characteristics (Cont.)

Characteristic	Description
Keyboard port	Mini DIN, PS-2, one on the rear panel and one on the left front side panel; not hot pluggable
Mouse port	Mini DIN, PS-2; one on the rear panel and one on the left front side panel; not hot pluggable
Printer port	IEEE P1284. Bidirectional parallel communications port
External VGA Output	15-pin, high density, Sub-D; resolution needs to be set to the same as the integral LCD display, 1024 x 768
COM port	RS-232
USB port	2 x USB 2.0 device connectors

A11 and A12 Main MPEG I/O Card Characteristics

The electrical characteristics listed in Table 1–2 apply to both the A11 and A12 Main MPEG I/O cards.

Table 1-2: A11 and A12 Main MPEG I/O card electrical characteristics

Characteristic	Description
Internal reference clock	This clock is used for the following functions: output clock, PCR/PTS/DTS timing, packet operation timing, and TDT/STT timing
Frequency	27 MHz \pm 1 ppm when manufactured
Stability	\pm 0.5 ppm per year \pm 1 ppm over temperature range
External reference / clock input	
Input connector type	BNC, 50 Ω , AC coupled
Frequency	
External reference input	8.12698 MHz, 10 MHz, 27 MHz
External clock input	160 kHz to 25 MHz (parallel clock) 1.28 MHz to 32 MHz (serial clock)
Amplitude	
External reference input, typical	0 \pm 6 dBm (peak-to-peak, sine wave) 0.5 V to 3.0 V (square wave)
External clock input, typical	0.5 V to 3.0 V (square wave)
External TTL trigger input	
Input connector type	BNC, 1 k Ω
Threshold level	
High level	>3.5 V (maximum voltage limit is 7.0 V)
Low level	<0.8 V
PPL	
Frequency range	64 MHz to 128 MHz
Output clock	
Maximum rate	64 MHz (serial clock) 25 MHz (parallel clock)
Internal and external 27 MHz	Output clock = (X / (2 * Y * Z)) * 27 MHz 512 < X < 131071, 3400 < Y < 6000, 2 <= Z <= 65536 (second power)
External parallel clock	Output clock = 108 MHz * Y / X, 512 < X < 131071, 8 < Y < 16383
External serial clock	Output clock = 864 MHz * Y / X, 512 < X < 131071, 8 < Y < 16383

Table 1-2: A11 and A12 Main MPEG I/O card electrical characteristics (Cont.)

Characteristic	Description
Output data rate	250 kbps minimum, 214 Mbps maximum
P/N and jitter (serial clock)	<-104 dBc/Hz, RBW = 300 Hz, @21.455707 MHz + 20 kHz
DVB-SPI Interface	
Input/output configuration	Output only
Connector type	D-sub, 25-pin
Data rate	250 kbps to 108 Mbps (107 Mbps maximum in duplex mode)
Pin assignment	1 DCLK 2 Ground 3 to 10 DATA 7 to DATA 0 11 DVALID 12 PSYNC 13 Shield 14 /DCLK 15 Ground 16 to 23 /DATA 7 to DATA 0 24 /DVALID 25 /PSYNC
Output amplitude, typical	240 mV to 550 mV (BUS LVDS with 100 Ω termination)
Output offset	1.1 V to 1.5 V
Output impedance	100 Ω , between differential outputs with output off
Data delay	±5 ns from DCLK falling edge
Input level	>200 mVpp, (RI+)-(RI-) with 100 Ω termination
Data hold time	$T/2 \pm T/10$, $T=1/f$, data latch on DCLK rising edge

A170 LVDS/ASI/SMPTE310M Interface Card

Table 1–3 lists the electrical characteristics of the A170 LVDS/ASI/SMPTE310M Interface card.

Table 1–3: A170 LVDS/ASI/SMPTE310M Interface card electrical characteristics

Characteristic	Description	
Internal reference clock, typical		
Frequency	27 MHz \pm 1 ppm when manufactured	
Stability	\pm 0.5 ppm per year \pm 1 ppm over temperature range	
ASI interface		
Connector type	BNC (common connector with SMPTE310M interface)	
Bit rate	250 kbps to 213 Mbps (107 Mbps maximum in duplex mode)	
Output		
Output impedance	75 Ω transformer coupled	
Voltage	800 mV \pm 10% into 75 Ω load	
Jitter	≤ 0.2 UI	
Maximum rise/fall time	≤ 1.2 ns, 20% to 80%	
Return loss, typical	>17 dB (5 MHz to 270 MHz) into 75 Ω load	
Transmission format	Packet mode or Burst mode	
Input		
Input impedance	75 Ω transformer coupled	
Voltage	200 mV to 880 mV (maximum limit: 3 V_{pp} @AC, 15 mA @DC)	
Data format	Accepts both Packet mode and Burst mode ASI signals	
Return loss, typical	>17 dB (5 MHz to 270 MHz) into 75 Ω load	
SMPTE310M interface		
Connector type	BNC (common connector with ASI interface)	
Bit rate	19,392,658.5 bps	

Table 1–3: A170 LVDS/ASI/SMPTE310M Interface card electrical characteristics (Cont.)

Characteristic	Description	
Output		
Output impedance	75 Ω transformer coupled	
Voltage	800 mV \pm 10% into 75 Ω load	
Jitter, typical	<2 ns p-p logic 0 rising edge when triggered on negative edge (EN50083-9.1998 Figure A.4)	
	<1.4 ns p-p logic 1 rising edge when triggered on negative edge (EN50083-9.1998 Figure A.5)	
Rise/fall time	$0.4 \text{ ns} \leq X \leq 5 \text{ ns}, 20\% \text{ to } 80\%$	
Return loss, typical	>30 dB (5 MHz to 38.785316 MHz) into 75 Ω load	
SMPTE310M interface (cont.)		
Input		
Input impedance	75 Ω transformer coupled	
Voltage	200 mV to 880 mV (maximum limit: 3 V _{pp} @AC, 15 mA @DC)	
Data format	Bi-phase coded, compliant with SMPTE310M	
Input bit rate	19,392,658.5 bps	
Return loss, typical	>17 dB (5 MHz to 38.785316 MHz) into 75 Ω load	
DVB-SPI interface		
Input/output configuration	Input only	
Connector type	D-sub, 25-pin	
Data rate	250 kbps to 108 Mbps (107 Mbps maximum in duplex mode)	
Pin assignment	1 DCLK 2 Ground 3 to 10 DATA 7 to DATA 0 11 DVALID 12 PSYNC 13 Shield 14 /DCLK 15 Ground 16 to 23 /DATA 7 to DATA 0 24 /DVALID 25 /PSYNC	
Data delay	±5 ns from DCLK falling edge	
Input level	>200 mVpp, (RI+)-(RI-) with 100 Ω termination	
Input impedance	100 Ω , between differential inputs	
Clock pulse width	T/2 \pm T/10, T=1/f (f = byte clock frequency)	
Data hold time	$T/2 \pm T/10$, $T=1/f$, data latch on DCLK rising edge	

QPSK/8PSK Card Characteristics

Tables 1-4 and 1-5 list electrical characteristics of the QPSK/8PSK card.

Table 1-4: QPSK/8PSK interface card electrical characteristics with a QPSK input

Characteristic	Description
Input frequency range	950 MHz to 2150 MHz with 1 MHz step size
Input signal amplitude range	-60 dBm to -30 dBm for a CBER of <1e ⁻⁶
Modulation format	QPSK in accordance with ETSI EN 300 421
Modulated baud rate	1 MBaud min, 30 MBaud max
Viterbi values supported	1/2, 2/3, 3/4, 5/6, 6/7, 7/8
FEC	In accordance with ETSI EN 300 421
Turbo viterbi values supported	1/2, 2/3, 3/4, 5/6, 7/8
Turbo FEC	Turbo code
Connector style	F-style
Input termination impedance	75 Ω nominal
Input return loss	4 dB min, 950 MHz to 2050 MHz
LNB supply voltage	Selectable; 13.0 V \pm 1.5 V or 18.0 V \pm 1.5 V, with 100 $\Omega,$ 5 watt resistor load
LNB supply maximum current	200 mA maximum
LNB 22 kHz signaling frequency	17.6 kHz min, 26.4 kHz max (22 kHz \pm 20%)
LNB 22 kHz signaling amplitude	600 mV p-p with a 100 Ω load
Ultimate modulation error ratio (with equalizer)	26 dB with an equalizer

Table 1–5: QPSK/8PSK interface card electrical characteristics with an 8PSK input

Characteristic	Description
Input frequency range	950 MHz to 2150 MHz with 1 MHz step size
Input signal amplitude range	-60 dBm to -30 dBm for a CBER of <1e ⁻⁶
Modulation format	Turbo 8PSK
Modulated baud rate	1 MBaud min, 30 MBaud max
Turbo viterbi values supported	2/3, 3/4 (2.05), 3/4 (2.1), 5/6, 8/9
Turbo FEC	Turbo code
Connector style	F-style
Input termination impedance	75 Ω nominal

Table 1–5: QPSK/8PSK interface card electrical characteristics with an 8PSK input (Cont.)

Characteristic	Description
Input return loss	4 dB min, 950 MHz to 2050 MHz
LNB supply voltage	Selectable; 13.0 V \pm 1.5 V or 18.0 V \pm 1.5 V, with 100 $\Omega,$ 5 watt resistor load
LNB supply maximum current	200 mA maximum
LNB 22 kHz signaling frequency	17.6 kHz min, 26.4 kHz max (22 kHz \pm 20%)
LNB 22 kHz signaling amplitude	600 mV p-p with a 100 Ω load
Ultimate modulation error ratio (with equalizer)	26 dB with an equalizer

8PSK and QPSK Measurements

Table 1–6 lists electrical characteristics for 8PSK and QPSK measurements.

Table 1-6: 8PSK and QPSK measurements

Characteristic	Description
RF lock	RF lock is indicated by LED and Status
Input level (signal strength)	Range: -60 dBm to -30 dBm Resolution: 1 dBm Accuracy: ±5 dBm
EVM (Error Vector Magnitude)	Display Range: $\leq 4.0\%$ to $\geq 30.0\%$ rms Resolution: 0.1% Accuracy: $\pm 20\%$ of reading
MER (Modulation Error Ratio) with an equalizer	Display Range: 10 dB to 26 dB with an equalizer Resolution: 1 dB Accuracy: ±2 dB for range 10 dB to 20 dB
SNR (Signal-to-Noise Ratio)	Display Range: 5 dB to 35 dB Resolution: 1 dB Accuracy: ± 2 dB for range from 5 dB to 30 dB
Pre Reed Solomon (RS) BER (Bit Error Rate)	Pre-RS BER is displayed
Post RS BER and TEF (Transport Error Flag)	Post Reed Solomon BER (TEF ratio), TEF rate, and number of Transport Error Flags (TEF count) are displayed
Constellation	RF constellation is displayed

COFDM Card Characteristics

Table 1–7 lists electrical characteristics for the COFDM interface card.

Table 1-7: COFDM interface card electrical characteristics

Characteristic	Description
Input frequency range	50 MHz to 858 MHz (to include low VHF)
Input signal amplitude range	The receiver delivers QEF (Quasi Error Free) operation over the following signal power ranges: QPSK (4QAM): -85 dBm to -15 dBm (24 dBuV to 94 dBuV) 16QAM: -80 dBm to -15 dBm (29 dBuV to 94 dBuV) 64QAM: -72 dBm to -15 dBm (37 dBuV to 94 dBuV)
	QEF operation is equivalent to a post Viterbi BER of $2x10^{-4}$ or better
	\geq -50 dBm to ensure compliance to IEC 61000-4-3 immunity
Compliance	COFDM (DVB-T) receptions and demodulation are compliant with ETSI EN300-744, 2 K, and 8 K transmission modes
Tuning resolution	166.7 kHz or smaller increments
Tuning accuracy	Better than ± 50 ppm
Channel bandwidth	6 MHz, 7 MHz, and 8 MHz (software selectable)
Connector style	F-style
Input termination impedance	75 Ω nominal
Input return loss	7 dB minimum, 50 MHz to 858 MHz
Modulation schemes supported	QPSK (4QAM), 16QAM, and 64QAM modulation
Transmission modes	2 K carriers, and 8 K carriers
Hierarchical modulation	All hierarchies will be supported, to include no hierarchy, and alpha = 1, 2 and 4.
Viterbi puncture rates	1/2, 2/3, 3/4, 5/6, 7/8
Guard intervals	1/32, 1/16, 1/8, 1/4
Spectrum polarity	The receiver will operate with both inverted and normal spectral polarity
Ultimate modulation error ratio, with equalizer	≥ 37 dB with an equalizer

COFDM Card Measurements

Table 1–8 lists the electrical characteristics for the COFDM measurements.

Table 1-8: COFDM measurements

Characteristic	Description
Overall receiver lock status	Overall receiver lock status is indicated by an LED on the rear panel
Transmission coding parameters	The receiver reports the current status of the following transmission parameters: - QPSK/16, QAM/64, QAM encoding - 2K/8K Transmission mode - Hierarchy status (hierarchy on/off, alpha value) - Viterbi puncture rate - Guard Interval Value - Gross bit rate in the channel - Spectrum polarity (inverted/non-inverted)
Input level (signal strength)	Ranges, High Sensitivity mode: QPSK (4QAM): -85 dBm to -10 dBm (24 dBuV to 99 dBuV) 16QAM: -80 dBm to -10 dBm (29 dBuV to 99 dBuV) 64QAM: -72 dBm to -13 dBm (37 dBuV to 96 dBuV) Ranges, High Resolution mode: QPSK (4QAM): -45 dBm to -10 dBm (64 dBuV to 99 dBuV) 16QAM: -45 dBm to -10 dBm (64 dBuV to 99 dBuV) 64QAM: -45 dBm to -13 dBm (64 dBuV to 96 dBuV) Resolution: 1 dBm
	Accuracy: ±3 dBm
RF carrier offset	Accuracy: \pm 50 ppm of the tuned frequency
SNR (Signal to Noise Ratio)	Display Range: 6 dB to 40 dB for QPSK (4QAM) 11 dB to 40 dB for 16QAM 16 dB to 40 dB for 64QAM
	Resolution: 1 dB
	Accuracy: \pm 1 dB to 30 dB SNR (measured at -30 dBm input in high resolution mode)

Table 1-8: COFDM measurements (Cont.)

Characteristic	Description
EVM (Error Vector Magnitude)	Display Range: ≤ 1% to ≥ 30% rms, for QPSK ≤ 1% to ≥ 20% rms, 16QAM ≤ 1% to ≥ 8.5% rms, 64QAM
	Resolution: 0.1%
	Accuracy: 1% (1 EVM unit), and an additional $\pm20\%$ of the reading
MER (Modulation Error Ratio) with an equalizer	Both MER Peak and MER Average are displayed as measured across all carriers
	Display Range: 6 dB to 37 dB for QPSK (4QAM) 11 dB to 37 dB for 16QAM 16 dB to 37 dB for 64QAM
	Resolution: 0.1 dB
	Accuracy: \pm 1 dB to 30 dB (Measured at -30 dBm input in High Resolution mode). For best MER accuracy, use High Resolution mode, and maintain the input signal level between -45 dBm and -15 dBm
Carrier power distribution	Carrier-by-carrier signal-to-noise power ratio is displayed
	Channel Flatness in dB can be viewed from the spectrum display
	Tilt in dB can be viewed from the spectrum display
Channel equalization status	Channel estimate I and Q values for each carrier are displayed
Constellation	The RF constellation is displayed
BER	Pre-Viterbi BER and Pre Reed-Solomon BER values are displayed
Post RS BER and TEF (Transport Error Flag)	Post Reed Solomon BER (uncorrectable error count) and number of Transport Error Flags are displayed

8VSB Card Characteristics

Table 1–9 lists the electrical characteristics for the 8VSB card.

Table 1-9: 8VSB board electrical characteristics

Characteristic	Description
Input frequency range	54 MHz to 860 MHz, VHF/UHF channels 2 to 69 (to include low VHF frequencies)
Input signal level	-72 dBm to -6 dBm (-23 dBmV to \pm +43 dBmV) ≥ -50 dBm to ensure compliance to IEC 61000-4-3 immunity
Modulation format	8VSB in accordance with ATSC A/53B
Receiver bandwidth	6 MHz
Input termination impedance	75 Ω nominal
Connector type	F-type
Input return loss	5 dB minimum
Ultimate equivalent MER, with an equalizer	≥ 31 dB with an equalizer

8VSB Measurements

Table 1–10 lists the electrical characteristics for the 8VSB measurements.

Table 1-10: 8VSB measurements

Characteristic	Description
RF Lock	RF lock is indicated by LED and Status
Input level (signal strength)	Display Range: -72 dBm to -2 dBm relative to 75 Ω (-23 dBmV to +47 dBmV) Resolution: 1dB Accuracy: \pm 3dB
EVM (Error Vector Magnitude)	Display Range: \leq 3.0% to \geq 12.5% rms Resolution: 0.1% Accuracy: \pm 20% of reading
Equivalent MER (Modulation Error Ratio) with Equalizer	Display Range: 17 dB to 31 dB with Equalizer Resolution: 0.1 dB Accuracy: ± 1 dB for MER > 25 dB; ± 3 db for MER 25 dB to 31 dB (Measured at -30 dBm input. For best MER accuracy, maintain the input signal level between -50 dBm and -15 dBm.)
SNR (Signal to Noise Ratio)	Display Range: 15 dB to 35 dB Resolution: 1 dB Accuracy: ±1 dB for SNR < 25 dB; ±3 db for SNR 25 dB to 35 dB

Table 1-10: 8VSB measurements (Cont.)

Characteristic	Description
BER	Pre-RS BER, SER 1 second and 10 seconds windows values are displayed
TEF (Transport Error Flag)	Transport Error Flags (uncorrectable error count) in a 1 second window and 10 second window are displayed
Constellation diagram	The 8VSB constellation diagram is a display of I-data history with histograms (the IQ constellation is not available). This is displayed as Symbol Distribution in the user interface
Echo profile	Equalizer filter tap information is displayed. Display Echo Level range: Normalized real tap values over the range of –1 to 1 Display Delay range: –6.7 μs to 45.5 μs

QAM Annex B Card Characteristics

Table 1–11 lists electrical characteristics for the QAM Annex B card.

Table 1-11: QAM Annex B board characteristics

Characteristic	Description
Input frequency range	88 MHz to 858 MHz
Input signal level	-64 dBm to -19 dBm (45 dBuV to 90 dBuV relative to 75 Ω) With either a 64 or 256 QAM input, there are five or fewer Transport Error Flags in 11 seconds, which corresponds to a post FEC rate of 1e ⁻⁸ ≥ -40 dBm when operated in an electromagnetic field of 3 V/m or more
Modulation format	64QAM, 256QAM (compliant with ITU J-83 Annex B)
Interleaving mode	Level 1 and Level 2 interleaving support compliant with all ITU J-83 Annex B, excluding I, J = (128,7) and (128,8), and in 256 QAM excluding (8, 16) and (16, 8)
Modulation baud rate	64 QAM: 5.056941 Mbaud/s 256 QAM: 5.360537 Mbaud/s
Spectrum polarity	Demodulates both Normal and Inverted IF Spectrum
Receiver bandwidth, QAM B	6 MHz nominal
Connector type	F type
Input termination impedance	75 Ω nominal

Table 1-11: QAM Annex B board characteristics (Cont.)

Characteristic	Description
Input return loss	5 dB minimum
Ultimate Modulation Error Ratio with equalizer	≥37 dB with an equalizer

QAM Annex B Measurements

Table 1–12 lists electrical characteristics for the QAM Annex B measurements.

Table 1-12: QAM Annex B measurements

Characteristic	Description
RF lock	RF lock is indicated by LED and Status
Input level (signal strength)	Range: -64 dBm to -19 dBm (45 dBuV to 90 dBuV relative to 75 Ω) Resolution: 1 dB Accuracy: \pm 3 dB
EVM (Error Vector Magnitude)	Display Range for 64 QAM: \leq 1% to \geq 5% rms Display Range for 256 QAM: \leq 1% to \geq 2.5% rms Resolution: 0.1% Accuracy: \pm 1%
MER (Modulation Error Ratio) with Equalizer	Display Range: 64 QAM: 22 dB to 37 dB 256 QAM: 28 dB to 37 dB Resolution: 0.1 dB Accuracy: ±1 dB for MER < 25 dB; ±3 db for MER 25 dB to 34 dB (measured at -30 dBm input)
SNR (Signal to Noise Ratio)	Display Range: 64QAM: 22 dB to 37 dB 256QAM: 28 dB to 37 dB Resolution: 1 dB Accuracy: ±1 dB for SNR < 25 dB; ±3 db for SNR 25 dB to 34 dB
BER (Bit Error Ratio)	Pre-RS BER is displayed
TEF (Transport Error Flag)	Transport Error Flags (uncorrectable error count) in a 1 second window and 10 second window are displayed
Constellation	The RF constellation is displayed

Video Over IP Electrical Characteristics

Table 1–13 lists the general and electrical characteristics for the Video Over IP board.

Table 1-13: Video Over IP board - Ethernet Electrical Port

Characteristic	Description
Standard	10/100/1000BASE-T IEEE 802.3
Connector type	RJ-45
Data Format 10/100 Base T	NRZ
Data Format 1000 Base T	Trellis encoded, PAM5 symbols, full-duplex on 4-pair Cat-5 UTP per IEEE 802.3ab

Video Over IP Optical Characteristics

Table 1–14 lists the general and optical characteristics for the Video Over IP board.

Table 1-14: Video Over IP board - Ethernet Optical port

Characteristic	Description	
Ethernet Optical Transmitter - General Characteristics		
Optical operating mode	Single mode or Multimode	
Connector type	Duplex data link MSA compliant SFP connector	
Standard	1000 BASE-X	
Data format	NRZ	
Ethernet Optical Transmitter - Single mode 1550 nm using Tektronix supplied SFP module		
Output power	-2 dBm to +4 dBm	
Center wavelength - 1550 nm	1530 nm Min, 1550 nm typical, 1570 nm max	
Total jitter (peak-to-peak)	< 170 ps	
Extinction ratio	≥ 9.0 dBm	
Ethernet Optical Receiver - Single mode 1550 nm using Tektronix supplied SFP module		
Optical input power	-26 dBm to -3 dBm, BER 1 X 10 ⁻¹²	
Input wavelength	1270 nm = λ = 1610 nm	

Table 1–14: Video Over IP board - Ethernet Optical port (Cont.)

Characteristic	Description	
Ethernet Optical Transmitter - Single mode 1310 nm using Tektronix supplied SFP module		
Output power	-11 dBm to -3 dBm	
Center wavelength - 1310 nm	1270 nm min, 1310 nm typical, 1355 nm max	
Total jitter (peak-to-peak)	<170 ps	
Extinction ratio	≥ 9.0 dBm	
Ethernet Optical Receiver - Single mode 1310 nm using Tektronix supplied SFP module		
Optical input power	-19 dBm to -3 dBm, BER 1 X 10 ⁻¹²	
Input wavelength	1270 nm = λ = 1610 nm	
Ethernet Optical Transmitter - Multimode 850 nm using Tektronix supplied SFP module		
Output power	-9.5 dBm to -2 dBm	
Center wavelength - 850 nm	830 nm min, 850 nm typical, 860 nm Ma	
Total jitter (peak-to-peak)	<170 ps	
Extinction ratio	≥ 9.0 dBm	
Ethernet Optical Receiver - Multimode 850 nm using Tektronix supplied SFP module		
Optical input power	-17 dBm to 0 dBm, BER 1 X 10 ⁻¹²	
Input wavelength	770 nm = λ = 860 nm	

AC Power Source Characteristics

Table 1–15 lists the electrical characteristics of the AC power source.

Table 1–15: AC power source electrical characteristics

Characteristic	Description
Source voltage	100 to 240 VAC \pm 10% (90 to 264 VAC RMS)
Frequency range	50/60 Hz
Power consumption	4 A maximum (marked on rear panel)
Peak inrush current	13 A peak at 240 VAC, 50 Hz
Mains fuse value	T6.3AH, 250 V, Fast; not operator replaceable. Refer servicing to qualified service personnel

Mechanical Characteristics

Table 1–16 lists the mechanical characteristics of the MTS400 Series platform.

Table 1–16: Mechanical characteristics

Characteristic	Description
Classification	Fixed location benchtop
Cooling airflow	Intake is from the front and sides of the instrument. Exhaust is to the bottom and rear of the instrument. For proper cooling, at least two inches (5.1 cm) of clearance is needed on the rear and sides of the instrument cabinet
Overall dimensions	Height 226 mm (8.9 in), without bottom feet Width: 432 mm (17 in) Depth: 560 mm (22 in), with rear feet
Weight	17.7 kg (39 lb)
Shipping weight	27.3 kg (64.5 lb)

Environmental Characteristics

Table 1–17 lists the environmental characteristics of the MTS400 Series platform.

Table 1-17: Environmental characteristics

Characteristic	Description
Atmospherics	
Temperature	
Operating	+5 °C to +40 °C, 30 °C per hour maximum gradient; temperature of the intake air at the front and sides of the instrument
Non-operating	-20 °C to +60 °C, 30 °C per hour maximum gradient
Humidity	
Operating	20% to 80% relative humidity up to 29 °C. Above 31 °C, derate linearly to 22% at 50 °C.
Non-operating	10% to 80% relative humidity, non-condensing
Altitude	
Operating	0 to 3000 m (9800 ft)
Non-operating	0 to 12,000 m (40,000 ft)
Dynamics	
Random vibration	
Operating	0.27 g _{rms} total from 5 to 500 Hz
Non-operating	2.28 g _{rms} total from 5 to 500 Hz
Sine vibration, operating	0.013 inch peak-to-peak displacement from 5 Hz to 55 Hz
Functional shock, non-operating	20 g, 11 ms half-sine
Transportation package material	Transportation package material meets recycling criteria as described in Environmental Guidelines for Package Design (Tektronix part number 063-1290-xx) and Environmentally Responsible Packaging Handbook (Tektronix part number 063-1302-xx)

Performance Verification

The procedures in this section allow you to verify the performance of the following MTS400 Series MPEG Test System components:

- ASI, SMPTE310M, and SPI signal interfaces
- RF interfaces
- IP interface
- MPEG Player (play and record functions)
- TS Compliance Analyzer (TSCA)

Preparation

Before you begin the *Performance Verification* procedures, review the following information:

- Ensure that the procedures are performed only by qualified service personnel who have read the *General Safety Summary* at the front of this manual.
- Ensure that the service personnel are familiar with system operation (refer to the MTS400 Series MPEG Test System Getting Started Manual).

Required Equipment

You will need the following equipment to perform the verification procedures:

- 75 Ω BNC-to-BNC cable (quantity of one) Tektronix part number 174-4954-00
- DB25-to-DB25 cable (quantity of one) Tektronix part number 174-4955-00
- A copy of the "sym1.mpg" transport stream file on the E:\ drive of the MTS400 Series system being tested

NOTE. The "sym1.mpg" transport stream file is supplied with every instrument in the following directory: E:\Test Streams.

If this file has been deleted, it cannot be restored. After completing this performance verification, you are advised to back up the test streams directory.

Preparing the Instrument

Perform the following steps to prepare the instrument to be tested:

- 1. Make sure the dongle is securely installed on the parallel port.
- **2.** Connect the keyboard and mouse to the appropriate side panel or rear panel connectors.
- **3.** Connect the power cord to the rear-panel power input connector.
- **4.** Make the following cable connections on the instrument (see Figure 2-1):
 - Connect the 75 Ω BNC-to-BNC cable between the ASI/SMPTE In connector and the ASI/SMPTE Out connector.
 - Connect the DB25-to-DB25 cable between the DVB/SPI In connector and the DVB/SPI Out connector.
- **5.** Power on the MTS400 Series system by pushing the front panel ON/STBY switch.
- **6.** After the Windows XP desktop appears, launch the Windows Explorer from the Start menu.
- 7. Use the Windows Explorer to locate the transport stream file named "sym1.mpg" in the E:\Test Streams directory. All instruments are shipped with this file.
- **8.** Close the Windows Explorer.

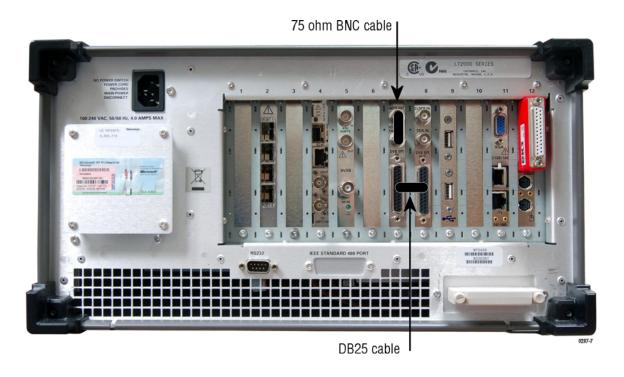


Figure 2-1: Cable connections on the MTS400 Series system

Verification Procedures

Perform the following steps to verify that the MTS400 Series system is operating properly. The steps are written with the assumption that you are performing all of the steps in order. If you start the procedures in the middle, you will have to review previous steps for instrument setup.

Verifying the ASI Interface

- 1. Start the MPEG Player by double-clicking the MPEG Player icon on the desktop.
- 2. Ensure that the SPI/ASI/310M menu is displayed on the menu bar. If it is not displayed, select Play > Interface > SPI/ASI/310M.
- **3.** Make the following changes in the SPI/ASI/310M menu:
 - a. Click BNC Port, and then click ASI.
 - **b.** Click ASI Format, and then click Byte.

NOTE. In the SPI/ASI/310M menu, you do not need to change the Through Out setting.

- **4.** Use the File menu to select the transport stream file to play:
 - **a.** Click Open and locate the file sym1.mpg (E:\ drive).
 - **b.** Select the file and click Open.
- 5. In the Play menu, verify that the Packet Size is set to 188.

NOTE. In the MPEG Player menus, a check mark appears next to the selected setting for some menu parameters.

- **6.** In the Play menu, click Clock to open the Clock dialog box shown in Figure 2–2.
 - a. Click Internal to set the Clock Source to internal.
 - **b.** Verify that the Data Rate is set to 41.470998 Mbps as shown in Figure 2–2.
 - **c.** If necessary, select the Fixed ES Rate check box.
 - **d.** Click OK to close the Clock dialog box.

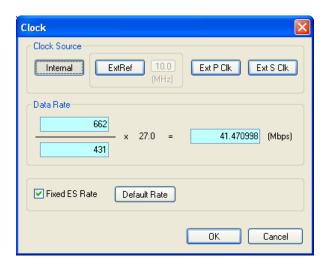


Figure 2-2: Clock settings dialog box

- 7. In the Play menu, click Update and then click On.
- **8.** In the Play menu, click Sync and then click TS Packet.

- **9.** In the Play menu, click PCR Initial Value to open the dialog box shown in Figure 2–3.
 - **a.** Enter 0 in the Base Value entry box.
 - **b.** Enter 0 in the Extension Value entry box.
 - **c.** Click OK to close the PCR Initial Value dialog box.

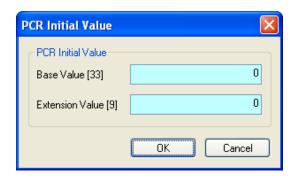


Figure 2–3: PCR Initial Value settings dialog box

- 10. In the Play menu, click Source and then click Disk.
- 11. In the Play menu, click Loop and then click On.
- 12. In the Play menu, click Auto Play and then click Off.

NOTE. In the Play menu, you do not need to change the Start/Stop or Timer Play settings.

- **13.** In the Play menu, click Other to open the Others dialog box shown in Figure 2–4.
 - **a.** Use the Standard drop-down list to select DVB.
 - **b.** Use the Numeric drop-down list to select Hex.
 - **c.** Select the SPI Output Enable check box. The Ext Play Start setting does not matter.
 - **d.** Click Update to open the Select Update Item dialog box shown in Figure 2–4.
 - Select the Continuity Counter check box.
 - Select the PCR/PTS/DTS check box.
 - Select the TDS/TOT/STT check box.
 - Clear the NPT check box.
 - Clear the Reed Solomon check box.
 - Select Hardware from the Update Method drop-down box.
 - Click OK to close the Select Update Item dialog box.
 - e. Click OK to close the Others dialog box.

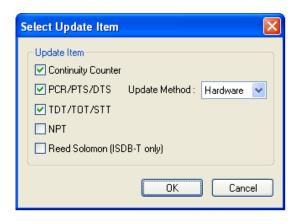


Figure 2-4: Others settings dialog box and Select Update Item settings dialog box

14. Start the TSCA by double-clicking the

icon on the desktop.

- **15.** In the MPEG Player toolbar, click the green Play arrow to start playing the transport stream file.
- **16.** In the TSCA window, close any dialog boxes and select **Standard** from the toolbar.
- 17. Make the following setting changes in the **Standard** dialog box.
 - a. Select **DVB** as the Base Standard.
 - **b.** Select **No Extensions** as the Region.
- 18. Close the Standard dialog box.
- 19. In the TSCA window, click Real-time.
- **20.** Make the following setting changes in the Select Real-time Interface dialog box (see Figure 2–5).
 - **a.** In the Interfaces drop-down box, select ASI and check that all of the interface options for the unit are listed in the drop-down list.
 - **b.** In the Interfaces Settings section, Select the Time Stamping box check box.

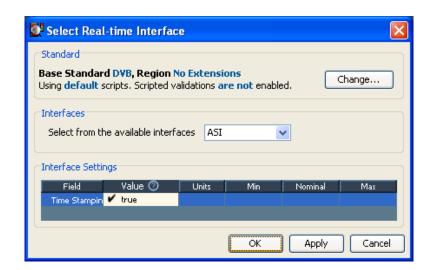


Figure 2–5: Select ASI interface

21. Click OK to accept the changes and close the Select Real-time Interface dialog box.

After a few seconds, the TSCA window opens with the analysis results of the ASI transport stream (see Figure 2–6).

- **22.** Verify the following in the analyzer window:
 - The TS Availability and Sync indicators at the bottom left of the analyzer window are green.
 - The bit rate readout at the bottom of the window reads 41.471 Mbps.

NOTE. It is normal if indicators other than the TS Availability and Sync turn red. This merely indicates that the software is operating and has detected errors in the transport stream.

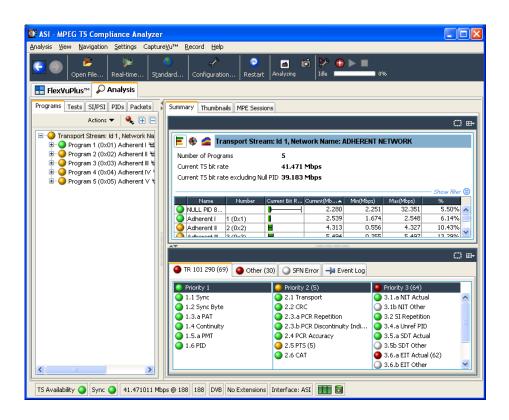


Figure 2-6: ASI interface analysis results

Verifying the MPEG Record Function

- 23. In the Record menu of the TSCA, click Record Settings to open the dialog box shown in Figure 2–7. Make the following setting changes in the dialog box:
 - **a.** Enable Transport source (a green dot appears next to the selected recording source).
 - **b.** Click on the ellipsis box at the far right of the Path entry box to open the Set Recording Name window.
 - **c.** In the Set Recording Name window (not shown), navigate to the F:\ drive on the MTS400 Series system.
 - **d.** In the File Name box, enter the following file name: record test.mpeg
 - e. Click Save to close the Set Recording Name window.
 - **f.** In the Record Settings window, enter 300 in the File Size entry box.
 - **g.** Select Manual as the Trigger type (a green dot appears next to the selected trigger type).
 - **h.** Select the Activate this dialog when recording starts check box.

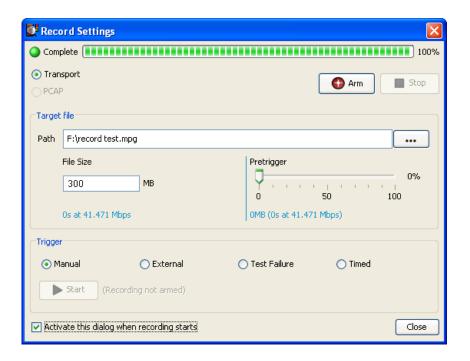


Figure 2–7: Record Settings dialog box

24. Click the Arm button. A message appears in the Record Settings window stating that the recording function is armed (see Figure 2–8).

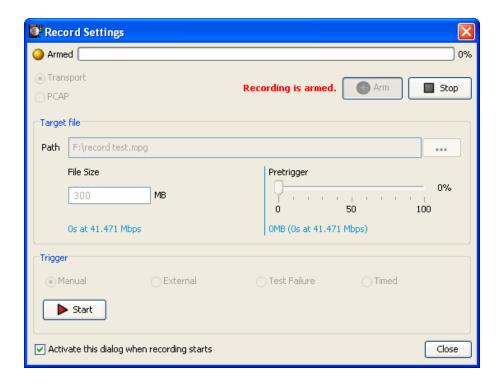


Figure 2–8: Record Settings window with the recording function armed

- **25.** Click the Start button. A message appears in the Record Settings window stating that the recording is currently in progress.
 - Observe the green bar showing the recording progress across the top of the window. The recording should take about 30 seconds to complete. When the recording is done, the progress bar says "Complete" as shown in Figure 2–7.
- **26.** After the recording is finished, click Close to close the Record Settings window.

- **27.** Perform the following steps to verify that the transport stream file was recorded to the F:\ drive of the instrument:
 - **a.** In the Record menu of the TSCA, click Record Settings to open the dialog box shown in Figure 2–7 on page 2–9.
 - **b.** Click on the ellipsis box at the far right of the Path entry box to open the Set Recording Name window.
 - **c.** In the Set Recording Name window, use the up arrow to navigate to the F:\ drive on the MTS400 Series system.
 - **d.** Verify that the following file name appears:

record test.mpeg

- e. Click Cancel to close the Set Recording Name window.
- **f.** Click Close to close the Record Settings window.
- **28.** Close the TSCA by clicking Exit in the File menu.

Verifying the SMPTE310M Interface

- **29.** In the MPEG Player window, stop the player by clicking the black Stop button on the toolbar.
- **30.** In the SPI/ASI/310M menu, click BNC Port, and then click 310M 8VSB.

- 31. Start the TSCA by double-clicking the
- icon on the desktop.
- **32.** In the MPEG Player toolbar, click the green Play arrow to start playing the transport stream file.
- **33.** Verify that the TS rate displayed at the bottom of the MPEG Player window displays the SMPTE310M rate of 19.392658 Mbps (see Figure 2–9).

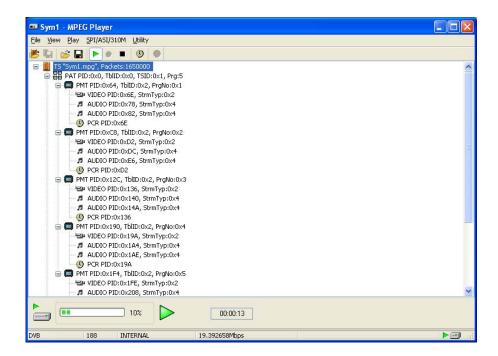


Figure 2-9: MPEG Player playing a SMPTE310M transport stream

- **34.** In the TSCA window, close any dialog boxes and select **Real-time** from the toolbar.
- **35.** In the Interfaces drop-down box, select SMPTE.
- **36.** Click OK to close the Select Real-time Interface dialog box.

After a few seconds, the TSCA window opens with the analysis results of the SMPTE310M transport stream (see Figure 2–10).

- **37.** Verify the following in the analyzer window:
 - The TS Availability and Sync indicators at the bottom left of the analyzer window are green.
 - The bit rate readout at the bottom of the window reads 19.393 Mbps.

NOTE. It is normal if indicators other than the TS Availability and Sync turn red. This merely indicates that the software is operating and has detected errors in the transport stream.

38. Close the TSCA by clicking Exit in the File menu.

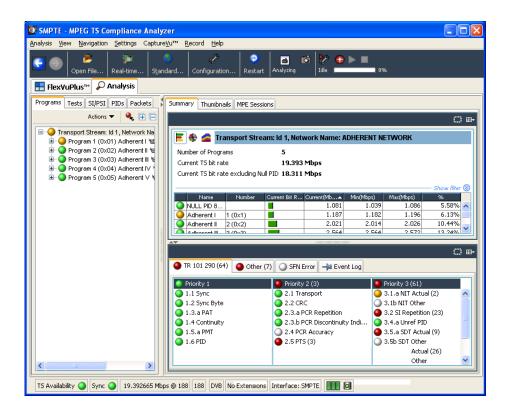


Figure 2-10: SMPTE310M interface analysis results

Verifying the SPI Interface

- **39.** In the MPEG Player window, stop the player by clicking the black Stop button on the toolbar.
- **40.** Start the TSCA by double-clicking the TSCA by double-clicking the Analyser icon on the desktop.
- **41.** In the MPEG Player toolbar, click the green Play arrow to start playing the transport stream file.
- **42.** In the TSCA window, close any dialog boxes and select **Real-time** from the toolbar.
- **43.** In the Interfaces drop-down box, select DVB Parallel.
- **44.** Click OK to close the Open Transport Stream window.

After a few seconds, the TSCA window opens with the analysis results of the SPI transport stream (see Figure 2–11).

- **45.** Verify the following in the analyzer window:
 - The TS Availability and Sync indicators at the bottom left of the analyzer window are green.
 - The bit rate readout at the bottom of the window reads 19.393 Mbps.

NOTE. It is normal if indicators other than the TS Availability and Sync turn red. This merely indicates that the software is operating and has detected errors in the transport stream.

46. Close the TSCA by clicking Exit in the File menu.

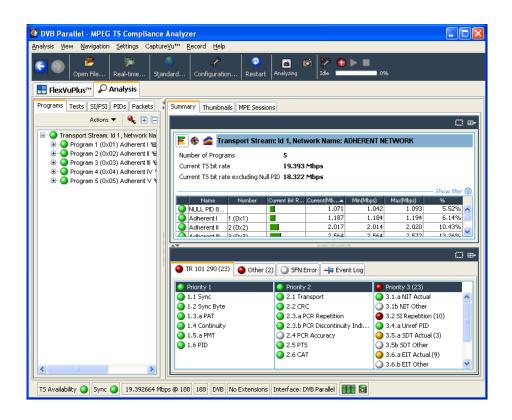


Figure 2-11: SPI interface analysis results

RF Interfaces

The following steps ensure that any RF interface installed in the instrument is available; only one interface can be installed at a time.

icon on the desktop.

- **47.** Start the TSCA by double-clicking the
- **48.** In the TSCA window, close any dialog boxes and select **Real-time** from the toolbar.
- **49.** In the Select Real-time Interface dialog box, click Change in the Standard section.
- **50.** Make the following setting changes in the Standard dialog box.
 - a. Select DVB as the Base Standard.
 - **b.** Select No Extensions as the Region.
- **51.** Click OK to close the Standard dialog box.
- **52.** In the Interfaces drop-down box, select the RF interface, for example, as PSK shown in Figure 2–12.

53. Note that the Firmware version is current.

If the firmware version is not current, a message is displayed and the Update Firmware button is activated. Click Update Firmware and allow the update to complete.

54. Note that the Interface Settings are displayed. See Figure 2–12. If you want to proceed with analysis, you may need to change the settings to suit your local setup.

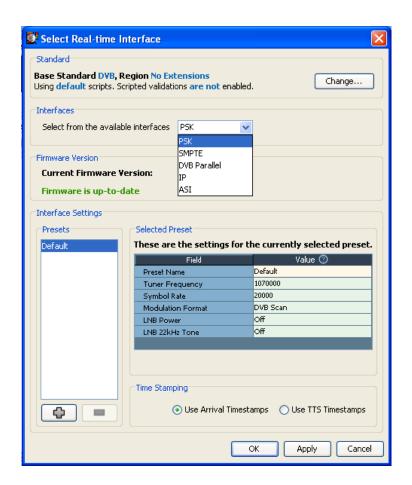


Figure 2–12: RF interface selection and settings

55. Click OK to close the Select Real-time Interface dialog box and proceed with analysis.

After a few seconds, if an RF feed is available, the TSCA window opens with the analysis results of the transport stream (see Figure 2–6).

IP Interface

If an IP interface is installed in the instrument, the instrument is networked, and the appropriate settings are known, select the IP card in the same manner as the RF card.

Shutting Down the Instrument

After you have checked the interface, you have completed the Performance Verification procedures. Perform the following steps to power off the instrument:

- 1. Select Shutdown from the Start menu. After the instrument shuts down, you will see a message saying that it is safe to turn off the instrument.
- 2. Use the front-panel power switch to turn the instrument off.
- 3. Remove the two signal cables from the rear panel of the instrument.
- **4.** Remove the power cord from the instrument.